
Don’t judge a test by 
its front end!

Michel Lalmohamed



THE test automation pyramid



The mighty dollar bill



A relic from the past



UI development & testing



• Front End Developers 
- More than backenders

UI development & testing



• Front End Developers 
- More than backenders

• Front End libraries
- React
- Angular

UI development & testing



• Front End Developers 
- More than backenders

• Front End libraries
- React
- Angular

• Unit test

UI development & testing



UI development & testing – started here…



UI development & testing – now we're here…



• Development effort

• Technical complexity

Why keep UI test automation to a minimum by choice?



• Development effort

• Technical complexity

• User Interface
- U S E R 

• Testing is managing risks, who dares to skip the UI (see point above)?

Why keep UI test automation to a minimum as a choice?



“I have this model”

Unit

Integration

UI



“I have this model”

UI

Integration

Unit



“I have this model”

UI

Integration

Unit



What if I can’t keep my UI 
test automation to a 

minimum?



What if I can’t keep my UI 
test automation to a 

minimum?



“Your automation effort 
will be expensive, slow 

and flaky!” *

* = This message is not supported, approved or paid for by Michel Lalmohamed!



EXPENSIVE



SLOW



FLAKY



Bye!



• UI tester is more expensive?
• Selenium WebDriver is more expensive than Postman?
• GraphQL cheaper then React?

Expensive, slow and flaky UI tests



• UI tester is more expensive than a backend tester?
• Selenium WebDriver is more expensive than Postman?
• GraphQL cheaper than React?

• Development cycle
- Finding an issue sooner is cheaper
- Backend development is ahead of front-end development!

Expensive, slow and flaky UI tests



• UI tester is more expensive than a backend tester?
• Selenium WebDriver is more expensive than Postman?
• GraphQL cheaper than React?

• Development cycle
- Finding an issue sooner is cheaper
- Backend development is ahead of front-end development!

• Test the code with unit testing!

• Test the integration layer with integration testing!

Expensive, slow and flaky UI tests



• Compared to?
- Unit
- Integration

Expensive, slow and flaky UI tests



• Compared to?
- Unit
- Integration

• Path of the end user
- Quicker than manual
- Reliable

Expensive, slow and flaky UI tests



• Compared to?
- Unit
- Integration

• Path of the end user
- Quicker than manual
- Reliable

• In the eye of the beholder
- It’s all relative!

Expensive, slow and flaky UI tests



• What is flaky?

Expensive, slow and flaky UI tests



• What is flaky?
- Breaking
- Inconsistent

Expensive, slow and flaky UI tests



• What is flaky?
- Breaking
- Inconsistent

• A test which is not 100% consistent is a broken test

Expensive, slow and flaky UI tests



• What is flaky?
- Breaking
- Inconsistent

• A Test which is not 100% consistent is a broken test

• There is always a reason why a test is not consistent

Expensive, slow and flaky UI tests



• UI == Software
• Browser == Software

- No opinion
- 0 and 1
- Pure logic

Expensive, slow and flaky UI tests



Flaky means “I don’t 
know”



Issues can always be explained, except:



“Your automation effort 
will be expensive, slow 

and flaky!”



“Your automation effort 
will be expensive, slow 

and flaky!”



• Right/Proper/Correct, oh that’s easy J
- It is hard
- It is a skill

Right approach to UI test automation



• Right/Proper/Correct, oh that’s easy J
- It is hard
- It is a skill

• Understand what’s going on
- Mindset -> Automation the interaction with the UI -> Mimicking an end user
- High level -> Writing code to create an automated UI test
- Low level ->

Right approach to UI test automation



• Low level explained

Right approach to UI automation

Source: danielgold.net



• Our written Selenium WebDriver code..

Right approach to UI automation

Source: danielgold.net



• ..starts a session with the chromedriver.exe on port 17494

Right approach to UI automation

Source: danielgold.net



• Chromedriver.exe acts as a server. Its role is to interact with the browser.

Right approach to UI automation

Source: danielgold.net



• Made by Google themselves!

Right approach to UI automation

Source: danielgold.net



• Google knows their own product best, the server should be robust, reliable and stable. Should be J

Right approach to UI automation

Source: danielgold.net



• Chromedriver.exe acts as a server and accepts REST commands. Specific WebDriver protocols 

Right approach to UI automation

Source: danielgold.net



• Chromedriver.exe interacts with the browser via the Remote Debugger Protocol

Right approach to UI automation

Source: danielgold.net



• Lastly the RDP translates the API calls so chromium JS code can be executed.

Right approach to UI automation

Source: danielgold.net



• Test code -> ChromeDriver.exe -> RDP -> Chromium JS code

Right approach to UI automation

Source: danielgold.net



• Playwright talks directly to the Chrome Debugger tool

Right approach to UI automation



• Playwright talks directly to the Chrome Debugger tool

• Cypress 
- Cypress bundles jQuery and exposes many of its DOM traversal methods to you
- Cypress loads its test code in the test iframe, 
- While the application is running in another iframe in the same browser tab
- Test code direct access to the application and most of the browser APIs
- JavaScript in the same browser tab

Right approach to UI automation

https://docs.cypress.io/guides/references/bundled-libraries


• Playwright talks directly to the Chrome Debugger tool

• Cypress 
- Cypress bundles jQuery and exposes many of its DOM traversal methods to you
- Cypress loads its test code in the test iframe, 
- While the application is running in another iframe in the same browser tab
- Test code direct access to the application and most of the browser APIs
- JavaScript in the same browser tab

• Low code tooling
- Proprietary, ask them J

Right approach to UI automation

https://docs.cypress.io/guides/references/bundled-libraries


• Not looking at renders from the UI

• Talking directly to the browser or the next best thing

• All about the DOM
- Document Object Model

Right approach to UI automation



• Benefits of this approach?

• How will me test case use this approach?

Right approach to UI automation



Fast



Vision



Mentality





Super user



Super user



Super user



Super user



• Super user, super problems

Right approach to UI automation



• Super user, super problems

• Sometimes think like a regular user

Right approach to UI automation



• Super user, super problems

• Sometimes think like a regular user

• Wait, wait, wait, wait
- Because of the speed
- Because of the vision
- “Give the UI some time to breath” 
- The DOM must wait for the Front End to catch up (milliseconds!)

Right approach to UI automation



• Build a wait strategy

Right approach to UI automation



A WAIT STRATEGY



• Build a wait strategy

Right approach to UI automation

By implicitly waiting, WebDriver polls the DOM for a certain duration when trying to find any element.



“Wait for everything please”



• Build a wait strategy

Right approach to UI automation

Hard coded waits, native code waits



“Please block all calls”



• Build a wait strategy
• Zero in on your element

Right approach to UI automation



• Build a wait strategy
• Zero in on your element
• Wait for it to be…

- Visible
- Existing
- Interactable
- Clickable
- Focused
- Selected
- Stale
- Invisible

Right approach to UI automation



• Build a wait strategy
• Zero in on your element
• Wait for it to be…

- Visible
- Existing
- Interactable
- Clickable
- Focused
- Selected
- Stale
- Invisible

• Then interact

Right approach to UI automation



• Build a wait strategy
• Zero in on your element
• Wait for it to be…

- Visible
- Existing
- Interactable
- Clickable
- Focused
- Selected
- Stale
- Invisible

• Then interact

Right approach to UI automation

1. User your imagination!
2. The documentation
3. Think: “I need help out my super user”



• Focus is important

Right approach to UI automation



• Focus is important

• Locating an element on the page
- Locators!

Right approach to UI automation



• Focus is important

• Locating an element on the page
- Locators!

• Build your own locators, always
- Don’t use the prebuild identifiers, use XPath or CSS locators

Right approach to UI automation



• Focus is important

• Locating an element on the page
- Locators!

• Build your own locators, always
- Don’t use the prebuild identifiers, use XPath or CSS locators

• Understand not only the DOM but the cohesion of the DOM, the structure

Right approach to UI automation



• Focus is important

• Locating an element on the page
- Locators!

• Build your own locators, always
- Don’t use the prebuild identifiers, use XPath or CSS locators

• Understand not only the DOM but the cohesion of the DOM, the structure

• Your locator must be unique

Right approach to UI automation





All about this!



• Concurrent runs
- Can your application handle that?

• Your runs must be consisted, every time
- Test data L

• Take it to the next level
- BE short cuts

• Keep trying
- It is hard
- It is a skill

Right approach to UI automation



But what if the test remains “flaky” L



But what if the test remains “flaky” L

HE NEVER PUSHED 
TO MASTER



But what if the test remains “flaky” L



But what if the test remains “flaky” L

broken



Embrace your super user



He will not let you down



Contactgegevens:

Bedankt voor je 
aandacht!

MichelLalmohamed@Valori.nl

@michelamin47

Thank you for 
listening!


